cellmaps_coembedding package
Subpackages
Submodules
cellmaps_coembedding.cellmaps_coembeddingcmd module
- cellmaps_coembedding.cellmaps_coembeddingcmd.main(args)[source]
Main entry point for program
- Parameters:
args (list) – arguments passed to command line usually
sys.argv[1:]()
- Returns:
return value of
cellmaps_coembedding.runner.CellmapsCoEmbedder.run()
or2
if an exception is raised- Return type:
cellmaps_coembedding.exceptions module
cellmaps_coembedding.runner module
- class cellmaps_coembedding.runner.AutoCoEmbeddingGenerator(dimensions=128, outdir=None, embeddings=None, ppi_embeddingdir=None, image_embeddingdir=None, embedding_names=None, jackknife_percent=0.0, n_epochs=100, save_update_epochs=True, batch_size=16, triplet_margin=0.2, dropout=0.5, l2_norm=False, mean_losses=False)[source]
Bases:
ProteinGPSCoEmbeddingGenerator
Generates co-embedding using proteingps
Deprecated since version 1.0.0: The embedding was renamed to proteingps. This class is now called ProteinGPSCoEmbeddingGenerator.
Initializes the ProteinGPSCoEmbeddingGenerator.
- Parameters:
dimensions – The dimensionality of the embedding space (default: 128).
outdir – The output directory where embeddings should be saved.
embeddings – Embedding data.
ppi_embeddingdir – Directory containing protein-protein interaction embeddings.
image_embeddingdir – Directory containing image embeddings.
embedding_names – List of names corresponding to each type of embedding provided.
jackknife_percent – Percentage of data to withhold from training as a method of resampling (default: 0).
n_epochs – Number of epochs for which the model trains (default: 250).
save_update_epochs – Boolean indicating whether to save embeddings at regular epoch intervals.
batch_size – Number of samples per batch during training (default: 16).
triplet_margin – The margin value for the triplet loss during training (default: 1.0).
dropout – The dropout rate between layers in the neural network (default: 0).
l2_norm – If true, L2 normalize coembeddings
- class cellmaps_coembedding.runner.CellmapsCoEmbedder(outdir=None, inputdirs=None, embedding_generator=None, name=None, organization_name=None, project_name=None, provenance_utils=<cellmaps_utils.provenance.ProvenanceUtil object>, skip_logging=True, input_data_dict=None, provenance=None)[source]
Bases:
object
Class to run algorithm
Constructor
- Parameters:
outdir (str) – Directory to write the results of this tool
inputdir (str) – Output directory where embeddings to be coembedded are located (output of cellmaps_image_embedding and cellmaps_ppi_embedding)
embedding_generator
skip_logging (bool) – If
True
skip logging, ifNone
orFalse
do NOT skip loggingname (str)
organization_name (str)
project_name (str)
input_data_dict (dict)
- class cellmaps_coembedding.runner.EmbeddingGenerator(dimensions=128, ppi_embeddingdir=None, image_embeddingdir=None, embeddings=None, embedding_names=None)[source]
Bases:
object
Base class for implementations that generate network embeddings
Constructor
- DROPOUT = 0.5
- JACKKNIFE_PERCENT = 0.0
- LATENT_DIMENSIONS = 128
- N_EPOCHS = 100
- get_dimensions()[source]
Gets number of dimensions this embedding will generate
- Returns:
number of dimensions aka vector length
- Return type:
- get_embedding_inputdirs()[source]
Determines the input directories for embeddings by extracting the directory path from each embedding file path. If the path is already a directory, it’s returned as is.
- Returns:
A list of directory paths for each embedding, derived from the embedding file paths.
- Return type:
- class cellmaps_coembedding.runner.FakeCoEmbeddingGenerator(dimensions=128, ppi_embeddingdir=None, image_embeddingdir=None, embeddings=None, embedding_names=None)[source]
Bases:
EmbeddingGenerator
Generates a fake coembedding for intersection of embedding dirs
Constructor :param dimensions:
- class cellmaps_coembedding.runner.MuseCoEmbeddingGenerator(dimensions=128, k=10, triplet_margin=0.1, dropout=0.5, n_epochs=100, n_epochs_init=100, outdir=None, embeddings=None, ppi_embeddingdir=None, image_embeddingdir=None, embedding_names=None, jackknife_percent=0.0)[source]
Bases:
EmbeddingGenerator
Generats co-embedding using MUSE
- Parameters:
dimensions
k – k nearest neighbors value used for clustering - clustering used for triplet loss
triplet_margin – margin for triplet loss
dropout – dropout between neural net layers
n_epochs – training epochs
n_epochs_init – initialization training epochs
outdir
ppi_embeddingdir
image_embeddingdir
jackknife_percent – percent of data to withhold from training
- N_EPOCHS_INIT = 100
- class cellmaps_coembedding.runner.ProteinGPSCoEmbeddingGenerator(dimensions=128, outdir=None, embeddings=None, ppi_embeddingdir=None, image_embeddingdir=None, embedding_names=None, jackknife_percent=0.0, n_epochs=100, save_update_epochs=True, batch_size=16, triplet_margin=0.2, dropout=0.5, l2_norm=False, mean_losses=False)[source]
Bases:
EmbeddingGenerator
Generates co-embedding using proteingps
Initializes the ProteinGPSCoEmbeddingGenerator.
- Parameters:
dimensions – The dimensionality of the embedding space (default: 128).
outdir – The output directory where embeddings should be saved.
embeddings – Embedding data.
ppi_embeddingdir – Directory containing protein-protein interaction embeddings.
image_embeddingdir – Directory containing image embeddings.
embedding_names – List of names corresponding to each type of embedding provided.
jackknife_percent – Percentage of data to withhold from training as a method of resampling (default: 0).
n_epochs – Number of epochs for which the model trains (default: 250).
save_update_epochs – Boolean indicating whether to save embeddings at regular epoch intervals.
batch_size – Number of samples per batch during training (default: 16).
triplet_margin – The margin value for the triplet loss during training (default: 1.0).
dropout – The dropout rate between layers in the neural network (default: 0).
l2_norm – If true, L2 normalize coembeddings
cellmaps_coembedding.utils module
Module contents
Top-level package for CM4AI Generate PPI.